单 Agent vs 多 Agent:架构、边界与落地取舍
在大型语言模型(LLM)能力飞速发展的今天,构建 Agent 应用已成为主流。然而,在选择单 Agent 还是多 Agent 架构时,许多团队会陷入困境。单 Agent 如同全栈工程师,能力全面但有上限;多 Agent 则像项目团队,分工明确但管理复杂。 本文将从工程落地视角,系统性对比单 Agent 与多 Agent 的技术路线、适用场景、关键设计点与常见陷阱,帮助你判断何时应该坚持“强单体”,何时应该引入“团队协作”,以及如何设计一个高效、可控的多 Agent 系统。 核心概念速览 Agent:一个以 LLM 为核心,具备工具调用(Tools)和记忆(Memory)能力的可执行实体。可以将其视为一个拥有“大脑”的微服务。 工具 (Tool/Function):Agent 可以调用的确定性能力,通常通过函数调用(Function Calling)实现,具有明确的输入、输出和错误定义。 记忆 (Memory):为 Agent 提供状态感知能力。包括短期对话上下文、长期知识库(如向量数据库)以及任务执行中的工作记忆(如草稿区)。 编排 (Orchestration):定义 Agent 之间或 Agent 内部任务的执行流程,包括消息传递、角色切换、任务分解与结果汇聚。编排可以是简单的循环,也可以是复杂的有向无环图(DAG)。 单 Agent vs. 多 Agent:优劣边界 维度 单 Agent 多 Agent 核心优势 架构简单、延迟低、可观测性好、维护成本低。 任务分解、领域专长、并行吞吐、自我审校、容错性强。 延迟/吞吐 通常端到端延迟较低。 可通过并行执行提升吞吐量,但调度本身会引入额外延迟。 成本 Token 开销、模型调用和工具回调次数相对较少。 协作本身(消息、投票、审校)会产生大量额外的 Token 和调用开销。 可靠性 链路短,故障点少,但容易出现“单点幻觉”。 可通过“质检”、“裁判”或“投票”机制降低幻觉风险,但也引入了协作失败的新风险。 可控性 逻辑清晰,易于追踪和调试。 依赖统一的消息协议和 Tracing 工具,否则复杂性难以管理。 维护 升级和迭代相对直接。 任何角色或协议的变更都可能涉及多个 Agent 的契约调整和回归测试。 核心原则:如果一个精心设计的“强单体”Agent 能够稳定满足业务需求,就不要急于引入多 Agent 架构。只有当任务的复杂度、并行需求或审校要求带来的收益,明确高于系统复杂度的增加时,才应考虑多 Agent 方案。 ...